Lesson 18:vision-face Tracking

Based on the previous two sections of face detection, keypoints tracking, we further achieve the tracking of the face, we can let the robot track the face, moved with the face, the basic process is as follows:

 

 

 

 

  • Face detection, lesson 16 has been introduced, and here can be directly quoted.
  • Feature acquisition, lesson 17 has also been achieved, but to achieve better results, the need to do some improve
  • Face tracking, according to the location of the ROI, to determine how control the robot move.

1. Face detection and feature acquisition

please check the face_tracker2.py from github,it’s support opencv3

FaceTracker inherits FaceDetector, LKTracker two classes, and made the following major changes and extensions

  • rewrite process_image function
  • add_keypoints Function is used to discover a new feature point that calls the goodFeaturesToTrack method and determines the distance from the current feature point cluster to ensure that a valid new feature point
  • drop_keypoints function uses a clustering algorithm to remove invalid feature points

1.1 code

#!/usr/bin/env python

import roslib
import rospy
import cv2
import numpy as np
from face_detector import FaceDetector
from lk_tracker import LKTracker

class FaceTracker(FaceDetector, LKTracker):
    def __init__(self, node_name):
        super(FaceTracker, self).__init__(node_name)
        
        self.n_faces = rospy.get_param("~n_faces", 1)
        self.show_text = rospy.get_param("~show_text", True)
        self.show_add_drop = rospy.get_param("~show_add_drop", False)
        self.feature_size = rospy.get_param("~feature_size", 1)
        self.use_depth_for_tracking = rospy.get_param("~use_depth_for_tracking", False)
        self.min_keypoints = rospy.get_param("~min_keypoints", 20)
        self.abs_min_keypoints = rospy.get_param("~abs_min_keypoints", 6)
        self.std_err_xy = rospy.get_param("~std_err_xy", 2.5) 
        self.pct_err_z = rospy.get_param("~pct_err_z", 0.42) 
        self.max_mse = rospy.get_param("~max_mse", 10000)
        self.add_keypoint_distance = rospy.get_param("~add_keypoint_distance", 10)
        self.add_keypoints_interval = rospy.get_param("~add_keypoints_interval", 1)
        self.drop_keypoints_interval = rospy.get_param("~drop_keypoints_interval", 1)
        self.expand_roi_init = rospy.get_param("~expand_roi", 1.02)
        self.expand_roi = self.expand_roi_init
        self.face_tracking = True

        self.frame_index = 0
        self.add_index = 0
        self.drop_index = 0
        self.keypoints = list()

        self.detect_box = None
        self.track_box = None
        
        self.grey = None
        self.prev_grey = None
        
    def process_image(self, cv_image):
        try:
            # Create a greyscale version of the image
            self.grey = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
            
            # Equalize the grey histogram to minimize lighting effects
            self.grey = cv2.equalizeHist(self.grey)
            
            # Step 1: Detect the face if we haven't already
            if self.detect_box is None:
                self.keypoints = list()
                self.track_box = None
                self.detect_box = self.detect_face(self.grey)
            else:
                # Step 2: If we aren't yet tracking keypoints, get them now
                if not self.track_box or not self.is_rect_nonzero(self.track_box):
                    self.track_box = self.detect_box
                    self.keypoints = self.get_keypoints(self.grey, self.track_box)
    
                # Store a copy of the current grey image used for LK tracking                   
                if self.prev_grey is None:
                    self.prev_grey = self.grey           
                  
                # Step 3: If we have keypoints, track them using optical flow
                self.track_box = self.track_keypoints(self.grey, self.prev_grey)
              
                # Step 4: Drop keypoints that are too far from the main cluster
                if self.frame_index % self.drop_keypoints_interval == 0 and len(self.keypoints) > 0:
                    ((cog_x, cog_y, cog_z), mse_xy, mse_z, score) = self.drop_keypoints(self.abs_min_keypoints, self.std_err_xy, self.max_mse)
                    
                    if score == -1:
                        self.detect_box = None
                        self.track_box = None
                        return cv_image
                  
                # Step 5: Add keypoints if the number is getting too low 
                if self.frame_index % self.add_keypoints_interval == 0 and len(self.keypoints) < self.min_keypoints:
                    self.expand_roi = self.expand_roi_init * self.expand_roi
                    self.add_keypoints(self.track_box)
                else:
                    self.frame_index += 1
                    self.expand_roi = self.expand_roi_init
            
            # Store a copy of the current grey image used for LK tracking            
            self.prev_grey = self.grey
              
            # Process any special keyboard commands for this module
            self.prev_grey = self.grey
              
            # Process any special keyboard commands for this module
            if 32 <= self.keystroke and self.keystroke < 128:
                cc = chr(self.keystroke).lower()
                if cc == 'c':
                    self.keypoints = []
                    self.track_box = None
                    self.detect_box = None
                elif cc == 'd':
                    self.show_add_drop = not self.show_add_drop
                    
        except AttributeError:
            pass
                    
        return cv_image

    def add_keypoints(self, track_box):
        # Look for any new keypoints around the current keypoints
        
        # Begin with a mask of all black pixels
        mask = np.zeros_like(self.grey)
        
        # Get the coordinates and dimensions of the current track box
        try:
            ((x,y), (w,h), a) = track_box
        except:
            try:
                x,y,w,h = track_box
            except:
                rospy.loginfo("Track box has shrunk to zero...")
                return
        
        x = int(x)
        y = int(y)
        
        # Expand the track box to look for new keypoints
        w_new = int(self.expand_roi * w)
        h_new = int(self.expand_roi * h)
        
        pt1 = (x - int(w_new / 2), y - int(h_new / 2))
        pt2 = (x + int(w_new / 2), y + int(h_new / 2))
        
        mask_box = ((x, y), (w_new, h_new), a)

        # Display the expanded ROI with a yellow rectangle
        if self.show_add_drop:
            cv2.rectangle(self.marker_image, pt1, pt2, (255, 255, 0))
                        
        # Create a filled white ellipse within the track_box to define the ROI
        cv2.ellipse(mask, mask_box, (255,255, 255), cv2.FILLED)
        
        if self.keypoints is not None:
            # Mask the current keypoints
            for x, y in [np.int32(p) for p in self.keypoints]:
                cv2.circle(mask, (x, y), 5, 0, -1)
         
        new_keypoints = cv2.goodFeaturesToTrack(self.grey, mask = mask, **self.gf_params)

        # Append new keypoints to the current list if they are not
        # too far from the current cluster      
        if new_keypoints is not None:
            for x, y in np.float32(new_keypoints).reshape(-1, 2):
                distance = self.distance_to_cluster((x,y), self.keypoints)
                if distance > self.add_keypoint_distance:
                    self.keypoints.append((x,y))
                    # Briefly display a blue disc where the new point is added
                    if self.show_add_drop:
                        cv2.circle(self.marker_image, (x, y), 3, (255, 255, 0, 0), cv2.FILLED, 2, 0)
                                    
            # Remove duplicate keypoints
            self.keypoints = list(set(self.keypoints))
        
    def distance_to_cluster(self, test_point, cluster):
        min_distance = 10000
        for point in cluster:
            if point == test_point:
                continue
            # Use L1 distance since it is faster than L2
            distance = abs(test_point[0] - point[0])  + abs(test_point[1] - point[1])
            if distance < min_distance:
                min_distance = distance
        return min_distance

    def drop_keypoints(self, min_keypoints, outlier_threshold, mse_threshold):
        sum_x = 0
        sum_y = 0
        sum_z = 0
        sse = 0
        keypoints_xy = self.keypoints
        keypoints_z = self.keypoints
        n_xy = len(self.keypoints)
        n_z = n_xy
        
        if self.use_depth_for_tracking:
            if self.depth_image is None:
                return ((0, 0, 0), 0, 0, -1)
        
        # If there are no keypoints left to track, start over
        if n_xy == 0:
            return ((0, 0, 0), 0, 0, -1)
        
        # Compute the COG (center of gravity) of the cluster
        for point in self.keypoints:
            sum_x = sum_x + point[0]
            sum_y = sum_y + point[1]
        
        mean_x = sum_x / n_xy
        mean_y = sum_y / n_xy
        
        if self.use_depth_for_tracking:
            for point in self.keypoints:
                try:
                    z = cv2.get2D(self.depth_image, min(self.frame_height - 1, int(point[1])), min(self.frame_width - 1, int(point[0])))
                except:
                    continue
                z = z[0]
                # Depth values can be NaN which should be ignored
                if isnan(z):
                    continue
                else:
                    sum_z = sum_z + z
                    
            mean_z = sum_z / n_z
            
        else:
            mean_z = -1
        
        # Compute the x-y MSE (mean squared error) of the cluster in the camera plane
        for point in self.keypoints:
            sse = sse + (point[0] - mean_x) * (point[0] - mean_x) + (point[1] - mean_y) * (point[1] - mean_y)
            #sse = sse + abs((point[0] - mean_x)) + abs((point[1] - mean_y))
        
        # Get the average over the number of feature points
        mse_xy = sse / n_xy

        # The MSE must be > 0 for any sensible feature cluster
        if mse_xy == 0 or mse_xy > mse_threshold:
            return ((0, 0, 0), 0, 0, -1)
        
        # Throw away the outliers based on the x-y variance
        max_err = 0
        for point in self.keypoints:
            std_err = ((point[0] - mean_x) * (point[0] - mean_x) + (point[1] - mean_y) * (point[1] - mean_y)) / mse_xy
            if std_err > max_err:
                max_err = std_err
            if std_err > outlier_threshold:
                keypoints_xy.remove(point)
                if self.show_add_drop:
                    # Briefly mark the removed points in red
                    cv2.circle(self.marker_image, (point[0], point[1]), 3, (0, 0, 255), cv2.FILLED, 2, 0)   
                try:
                    keypoints_z.remove(point)
                    n_z = n_z - 1
                except:
                    pass
                
                n_xy = n_xy - 1
                                
        # Now do the same for depth
        if self.use_depth_for_tracking:
            sse = 0
            for point in keypoints_z:
                try:
                    z = cv2.get2D(self.depth_image, min(self.frame_height - 1, int(point[1])), min(self.frame_width - 1, int(point[0])))
                    z = z[0]
                    sse = sse + (z - mean_z) * (z - mean_z)
                except:
                    n_z = n_z - 1
            
            if n_z != 0:
                mse_z = sse / n_z
            else:
                mse_z = 0
            
            # Throw away the outliers based on depth using percent error 
            # rather than standard error since depth values can jump
            # dramatically at object boundaries
            for point in keypoints_z:
                try:
                    z = cv2.get2D(self.depth_image, min(self.frame_height - 1, int(point[1])), min(self.frame_width - 1, int(point[0])))
                    z = z[0]
                except:
                    continue
                try:
                    pct_err = abs(z - mean_z) / mean_z
                    if pct_err > self.pct_err_z:
                        keypoints_xy.remove(point)
                        if self.show_add_drop:
                            # Briefly mark the removed points in red
                            cv2.circle(self.marker_image, (point[0], point[1]), 2, (0, 0, 255), cv2.FILLED)  
                except:
                    pass
        else:
            mse_z = -1
        
        self.keypoints = keypoints_xy
               
        # Consider a cluster bad if we have fewer than min_keypoints left
        if len(self.keypoints) < min_keypoints:
            score = -1
        else:
            score = 1

        return ((mean_x, mean_y, mean_z), mse_xy, mse_z, score)
    
if __name__ == '__main__':
    try:
        node_name = "face_tracker"
        FaceTracker(node_name)
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down face tracker node."
        cv2.destroyAllWindows()

1.2 launch file

<launch>
   <node pkg="diego_vision" name="face_tracker2" type="face_tracker2.py" output="screen">

   <remap from="input_rgb_image" to="/camera/rgb/image_color" />
   <remap from="input_depth_image" to="/camera/depth/image" />
 
   <rosparam>
       use_depth_for_tracking: True
       min_keypoints: 20
       abs_min_keypoints: 6
       add_keypoint_distance: 10
       std_err_xy: 2.5
       pct_err_z: 0.42
       max_mse: 10000
       add_keypoints_interval: 1
       drop_keypoints_interval: 1
       show_text: True
       show_features: True
       show_add_drop: False
       feature_size: 1
       expand_roi: 1.02
       gf_maxCorners: 200
       gf_qualityLevel: 0.02
       gf_minDistance: 7
       gf_blockSize: 10
       gf_useHarrisDetector: False
       gf_k: 0.04
       haar_scaleFactor: 1.3
       haar_minNeighbors: 3
       haar_minSize: 30
       haar_maxSize: 150
   </rosparam>

   <param name="cascade_1" value="$(find diego_vision)/data/haar_detectors/haarcascade_frontalface_alt2.xml" />
   <param name="cascade_2" value="$(find diego_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
   <param name="cascade_3" value="$(find diego_vision)/data/haar_detectors/haarcascade_profileface.xml" />

</node>
</launch>

In the Diego1 plus use the depth of the camera, so the use_depth_for_tracking parameter can be set to True, the practice shows that the use of depth camera will have a better effect, then we are in the two terminal start openni node, and face_tracker2.py node, there will be video Window, if someone appears in front of the camera  the face will be captured.

roslaunch diego_vision openni_node.launch

roslaucn diego_vision face_tracker2.launch

2.Face tracking

please check object_tracker2.py from github,it support opencv3

The main functions of the ObjectTracker class are as follows:

  • Subscribes to the ROI information, which is published by the FaceTracker class, indicating the location of the captured face, and the ObjectTracker subscribes to this message to determine the position of the face on the screen
  • Subscribe to the / camera / depth / image message to determine the location of the face from the camera to achieve tracking
  • Publish a Twist message to control the movement of the robot

2.1 code

#!/usr/bin/env python

import roslib
import rospy
from sensor_msgs.msg import Image, RegionOfInterest, CameraInfo
from geometry_msgs.msg import Twist
from math import copysign, isnan
from cv_bridge import CvBridge, CvBridgeError
import numpy as np

class ObjectTracker():
    def __init__(self):
        rospy.init_node("object_tracker")
                        
        # Set the shutdown function (stop the robot)
        rospy.on_shutdown(self.shutdown)
        
        # How often should we update the robot's motion?
        self.rate = rospy.get_param("~rate", 10)
        r = rospy.Rate(self.rate) 
        
        # The maximum rotation speed in radians per second
        self.max_rotation_speed = rospy.get_param("~max_rotation_speed", 2.0)
        
        # The minimum rotation speed in radians per second
        self.min_rotation_speed = rospy.get_param("~min_rotation_speed", 0.5)
        
        # The x threshold (% of image width) indicates how far off-center
        # the ROI needs to be in the x-direction before we react
        self.x_threshold = rospy.get_param("~x_threshold", 0.1)
        
        # The maximum distance a target can be from the robot for us to track
        self.max_z = rospy.get_param("~max_z", 2.0)
        
        # Initialize the global ROI
        self.roi = RegionOfInterest()
        
        # The goal distance (in meters) to keep between the robot and the person
        self.goal_z = rospy.get_param("~goal_z", 0.6)
        
        # How far away from the goal distance (in meters) before the robot reacts
        self.z_threshold = rospy.get_param("~z_threshold", 0.05)
        
        # How far away from being centered (x displacement) on the person
        # before the robot reacts
        self.x_threshold = rospy.get_param("~x_threshold", 0.05)
        
        # How much do we weight the goal distance (z) when making a movement
        self.z_scale = rospy.get_param("~z_scale", 1.0)

        # How much do we weight x-displacement of the person when making a movement        
        self.x_scale = rospy.get_param("~x_scale", 2.0)
        
        # The max linear speed in meters per second
        self.max_linear_speed = rospy.get_param("~max_linear_speed", 0.3)
        
        # The minimum linear speed in meters per second
        self.min_linear_speed = rospy.get_param("~min_linear_speed", 0.1)

        # Publisher to control the robot's movement
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist)
        
        # Intialize the movement command
        self.move_cmd = Twist()
        
        # We will get the image width and height from the camera_info topic
        self.image_width = 0
        self.image_height = 0
        
        # We need cv_bridge to convert the ROS depth image to an OpenCV array
        self.cv_bridge = CvBridge()
        self.depth_array = None
        
        # Set flag to indicate when the ROI stops updating
        self.target_visible = False
        
        # Wait for the camera_info topic to become available
        rospy.loginfo("Waiting for camera_info topic...")
        rospy.wait_for_message('camera_info', CameraInfo)
        
        # Subscribe to the camera_info topic to get the image width and height
        rospy.Subscriber('camera_info', CameraInfo, self.get_camera_info)

        # Wait until we actually have the camera data
        while self.image_width == 0 or self.image_height == 0:
            rospy.sleep(1)
                    
        # Subscribe to the registered depth image
        rospy.Subscriber("depth_image", Image, self.convert_depth_image)
        
        # Wait for the depth image to become available
        rospy.wait_for_message('depth_image', Image)
        
        # Subscribe to the ROI topic and set the callback to update the robot's motion
        rospy.Subscriber('roi', RegionOfInterest, self.set_cmd_vel)
        
        # Wait until we have an ROI to follow
        rospy.loginfo("Waiting for an ROI to track...")
        rospy.wait_for_message('roi', RegionOfInterest)
        
        rospy.loginfo("ROI messages detected. Starting tracker...")
        
        # Begin the tracking loop
        while not rospy.is_shutdown():
            # If the target is not visible, stop the robot
            if not self.target_visible:
                self.move_cmd = Twist()
            else:
                # Reset the flag to False by default
                self.target_visible = False
                
            # Send the Twist command to the robot
            self.cmd_vel_pub.publish(self.move_cmd)
            
            # Sleep for 1/self.rate seconds
            r.sleep()

    def set_cmd_vel(self, msg):
        # If the ROI has a width or height of 0, we have lost the target
        if msg.width == 0 or msg.height == 0:
            return
        
        # If the ROI stops updating this next statement will not happen
        self.target_visible = True
        
        self.roi = msg
        
        # Compute the displacement of the ROI from the center of the image
        target_offset_x = msg.x_offset + msg.width / 2 - self.image_width / 2

        try:
            percent_offset_x = float(target_offset_x) / (float(self.image_width) / 2.0)
        except:
            percent_offset_x = 0
            
        # Intialize the movement command
        self.move_cmd = Twist()
        
        # Rotate the robot only if the displacement of the target exceeds the threshold
        if abs(percent_offset_x) > self.x_threshold:
            # Set the rotation speed proportional to the displacement of the target
            try:
                speed = percent_offset_x * self.x_scale
                self.move_cmd.angular.z = -copysign(max(self.min_rotation_speed,
                                            min(self.max_rotation_speed, abs(speed))), speed)
            except:
                pass
            
        # Now compute the depth component
        n_z = sum_z = mean_z = 0
         
        # Get the min/max x and y values from the ROI
        min_x = self.roi.x_offset
        max_x = min_x + self.roi.width
        min_y = self.roi.y_offset
        max_y = min_y + self.roi.height
        
        # Get the average depth value over the ROI
        for x in range(min_x, max_x):
            for y in range(min_y, max_y):
                try:
                    z = self.depth_array[y, x]
                except:
                    continue
                
                # Depth values can be NaN which should be ignored
                if isnan(z) or z > self.max_z:
                    continue
                else:
                    sum_z = sum_z + z
                    n_z += 1   
        try:
            mean_z = sum_z / n_z
            
            if mean_z < self.max_z and (abs(mean_z - self.goal_z) > self.z_threshold):
                speed = (mean_z - self.goal_z) * self.z_scale
                self.move_cmd.linear.x = copysign(min(self.max_linear_speed, max(self.min_linear_speed, abs(speed))), speed)
        except:
            pass
                    
    def convert_depth_image(self, ros_image):
        # Use cv_bridge() to convert the ROS image to OpenCV format
        try:
            # The depth image is a single-channel float32 image
            depth_image = self.cv_bridge.imgmsg_to_cv2(ros_image, "32FC1")
        except CvBridgeError, e:
            print e

        # Convert the depth image to a Numpy array
        self.depth_array = np.array(depth_image, dtype=np.float32)

    def get_camera_info(self, msg):
        self.image_width = msg.width
        self.image_height = msg.height

    def shutdown(self):
        rospy.loginfo("Stopping the robot...")
        self.cmd_vel_pub.publish(Twist())
        rospy.sleep(1)     

if __name__ == '__main__':
    try:
        ObjectTracker()
        rospy.spin()
    except rospy.ROSInterruptException:
        rospy.loginfo("Object tracking node terminated.")

2.2 launch文件

<launch>
<param name="/camera/driver/depth_registration" value="True" />

<node pkg="diego_vision" name="object_tracker" type="object_tracker2.py" output="screen">

<remap from="camera_info" to="/camera/depth/camera_info" />
<remap from="depth_image" to="/camera/depth/image" />

<rosparam>
rate: 10
max_z: 2.0
goal_z: 0.6
z_threshold: 0.05
x_threshold: 0.1
z_scale: 1.0
x_scale: 0.1
max_rotation_speed: 0.2
min_rotation_speed: 0.02
max_linear_speed: 0.2
min_linear_speed: 0.05
</rosparam>

</node>
</launch>

In the case of starting the face_tracker2.py node, execute the following code to start the object_tracker2.py node, the robot will follow the detected face movement.

roslaunch diego_vision object_tracker2.launch

Need to be specified in the launch file on the speed of the parameters can not be set too much, too much will lead to the robot kept turning to track the face, because the image processing is lagging, the speed multiplied by the lag time, Will cause the robot to move beyond the expected location, non-stop correction.

Leave a Reply

Scroll to top
%d bloggers like this: